EQUATIONS OF MOTION OF THE MATERIAL
IN A SHAKER

A. F. Ryzhkov and A. P. Baskakov UDC 86.036.5

The behavior of a layer of coarse material in a vertically vibrating vessel is analyzed. The
equations of motion and the initial conditions are found for the interval at which the material
is tossed from the bottom of the vessel, with the material treated as a loose medium. The
results are compared with experiment.

The disperse material in a shaker or vertically vibrating vessel is periodically tossed into flight
from the bottom. Kroll reported the first attempts to calculate this motion [1]; further work was reported
by Josida and Kausaka [2]. Assuming an absolutely rigid porous medium not touching the walls of the
vessel, these investigators found the trajectory for this particular model, using as initial conditions an
equation for the separation of a heavy mass point. However, experimental results show that the equations
derived here are accurate only if the depth of the material in the shaker is small [1, 3].

An oscilloscopic study has been made of the pressure exerted by a coarse material (synthetic corun-
dum with an average particle size of 1.32 mm) on a membrane strain gauge embedded in the wall by the
procedure described in [4]. The results show that the material in the shaker exerts a pressure on the wall
throughout the vibration period. The magnitude of this pressure during the flight stage is governed pri-
marily by the direction in which the material is moving with respect to the vessel. This pressure changes
abruptly when the particles stop rising and begin to fall. During the contact stage the pressure is maximal
near the bottom of the vessel, while during the flight stage the stress is removed from the lower part of the
material, and compressional stress is retained only in the middle of the material.

The pressure exerted by the material on the wall generates a friction force between the wall and the
material; this friction retards the motion of the material. The vibration of a coarse material is known to
involve a close packing of particles, because of the smallness of the hydrodynamic forces which arise
during the periodic expulsion of gas from the pulsating volume below the material [2, 4]. Special observa-
tions of the rate of particle mixing in the layer of material have shown that the velocity of the vibrational-
convective particle motion is one or two orders of magnitude lower than the vibration velocity. Accordingly,
in a study of the vertical motion of the material the relative motion of the particles in the layer of material
can be neglected in comparison with the height to which the material is tossed, and the material in the flight
stage can be treated as a rigid body whose motion changes under the influence of gravitation and the dry
friction with the wall of the vessel:
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The limiting value of the dry-friction force mf- is related to the compressional stress in the cylin-
drical layer by
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We will determine the stresses within the material in several steps. The stresses existing in the
layer during the flight stage are due completely to the stresses retained in the loose material after its
separation from the bottom of the vessel.

The accelerated motion of the vessel in the gravitational field leads to elastic compressional strain
at the lower boundary of the material layer; this strain is accompanied by an irreversible slipping of
adjacent particles at contact points, which tends to attenuate a signal propagating into the interior of a
loose medium. Since the signal is transmitted essentially instantaneously along the material [5], we can
describe the inertial acceleration j of the particles in the layer by the following equation, if we assume
an exponential damping:

i=lyexpl—n—x)] (4)

where j, = Agw’sinwt is the vibration acceleration.
The vertical compression of the material and the related tendency of the layer to expand in the hori-
zontal direction leads to normal and tangential stresses at the walls of the vessel. The results is dry fric~

tion between the walls and the fixed material, which has an unloading effect on the material. During this
stage the stress state of the material is determined from the force-balance condition
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Integrating (5), using T = aloyg and (4), and substituting into the solution the dynamic separation
condition reflecting the vanishing of the reaction of the bottom, ox(xy) = 0, we can find the time separation
té") and the stress retained in the medium at this time:

. _ Fo
sinwi{~) = ; 6
0 KO ( )
L J— [I—exp <_LL\\}<1_£ ﬂ) N
’ D | D } K, ¢,
where
K, = A® : _ Ao D owe=dad, y=p,ll—8g (77
g g
1—exp(r-g'—x0)
— o n 7"
Py = (1‘ %/D> . (1

N

The quantity ¢ is defined like ¢, but with x; in place of x.

At time t§+), when the material begins to rise above the bottom of the vessel, the friction force
changes sign (v > 0) and, acting in the same direction as the gravitational force, retards the motion of the
material, thereby increasing the stress in the material. Since the flight stage is very brief (~107%-10-3
sec) we can assume that the packing of particles at the time of separation is retained without any signifi-
cant change throughout the flight; then the stresses in the tossed material in the case v > 0 are given by
Eq. (5), where the sign of v is changed. The solution of this equation yields
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When the sign of 7y changes again, as the material falls to the bottom (v < 0), the stress in the
material again becomes equal to the value Ugc(_) given by Eq. (7).

Accordingly, the term taking into account the external friction in equation of motion (1) is written

fo = { hy—1g for v>0, (10)

(t—vy)g for <0,

where the coefficients b+ and Y(-) are governed by the mechanical and geometric properties of the loose
material and do not depend explicitly on the vibration characteristics:
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Using Egs. (2)-(12), we can write the equation of motion for this model, Eq. (1), as

ds &L _{ Yyg for >0, a3)
d? dt? Yyg for v< 0.

where s is the height to which the material is tossed above the bottom of the vessel, which itself is moving
according to I = Agsinwt; s +1 = u,

This equation describes the motion of a loose material in a steady-state body-force field proportional
to the gravitational force, with an abrupt change is the magnitude of this force when the direction of the
relative velocity changes. The difference between the equations of motion found on the basis of this model
and those found on the basis of the Kroll model is governed by the magnitude of the coefficients Y(+) and
¥(-) and by the time over which they are effective.

For small heights, with x; << 1/7m and x; < D/, and for which the external friction force is ex-
tremely slight, we have ¥+) = ¥(=) = 1, so that the layer moves along the trajectory of a mass point in a
gravitational force field. As the looseness becomes more important, the friction force increases, and the
motion of the layer is changed. As the material moves upward (v > 0) the friction force retards the ascent,
and as the material moves downward the friction force retards the descent.

The increase of b with increasing x, is unbounded. When the body forces acting on the material
after the reaction of the bottom of the vessel vanishes reach the level of the inertial vibration forces @)
= K;), the material, "pinched" by the walls, begins to move along with the vessel and does not leave the
bottom,

At heights x, corresponding to $+) < K,, the material is tossed above the bottom. However, the flight
stage begins at the time té' at which the stress at the lower boundary of the layer vanishes, given in (6),
only under the condition ;) = ¢ Otherwise, the flight stage begins later, at a time given by

: ’ ’llJ(n
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Over the time interval to(")-t(') the material moves along with the vessel walls and exerts no pressure
on the bottom of the vessel.

On the other hand, the quantity §(-) decreases from one to zero as X, increases; accordingly, the
deeper the layer, the slower the descent of the material.

Accordingly, we can describe the motion of the material in the shaker during the ascent and descent
in dimensionless form by equations

Mo o <0 e (15)
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Fig. 1. Behavior of the particle pressure on the bottom of the
vessel (Py) and on the walls of the vessel (Pyy), the electrical
resistance between the material and the bottom (R4}, and the re-
sistance between the walls of the vessel (R,) recorded during the
vibration of a 160-mm layer of graphite at f = 16 Hz and A, = 2.73
mm. Here j, is the signal from the piezoelectric transducer.

Fig. 2. The coefficient ¢, (dashed curves), ¢J(+) (solid curves), and
4 () (dot-dash curves) calculated from Egs. (7"), (11), and (12) as
functions of x; (in m) for n/D = 10 m~!, D= 0.1 m, and the follow-
ing values of K, and 7, respectively: 1) 1.56, 2.2; 2) 2.82, 13; 3)
4.4, 28; 4) 6.35, 50.
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where sy, = s/Ag; 6= wt; and 64 is the phase angle of the descent.

The dimensionless time 6' at which the flight begins is to be found as a function of the relation be-
tween ¢y and 44y from Eq. (6) or (14). The phase angle 6" at which the direction of velocity v changes is
found from the condition

51 om0
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o
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In an experimental check of this model we studied a graphite layer with particle sizes of 0.25-1.0
mm in a Plexiglas column 100 mm in diameter with a layer depth of x, = 50-600 mm. The vibration fre-
quency was varied from 10 to 30 Hz with a vibration amplitude of A; = 2.73 mm. In the experiments we
measured the instantaneous electrical resistance of the material and determined whether there was elec~
trical contact between the material and the bottom of the vessel. Simultaneously, on the basis of the
appearance and disappearance of a load on a membrane strain gauge at the bottom of the vessel, we deter-
mined the phase angles of the separation, wt;™’, and descent wtg, of the material, A ceramic piezoelectric
transducer mounted in the bottom was used along with a PDU-1IM amplifier to detect the vibration acceler-
ation and the mechanical impacts of the particles. All the changes were recorded on motion-picture film
with a loop oscillograph [4].
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The results (Fig. 1) show that after the pressure

8
A exerted by the particles on the strain gauge disappears the
% \\ ! electrical resistance between the bottom of the vessel and
10 ™ the layer does not reach its limiting value instantaneously
\ \ ‘ N\ and it displays some fluctuation. At these times the piezo-
@ g N \ electric transducer indicates mechanical impacts. Ata
& \3 \ phase angle of about 7 /2 the signals indicating contact of
Y the material with the bottom are cut off, and they do not
¢ \ Sinax \ reappear until the layer reaches the bottom (d in Fig. 1).
45 )2, Accordingly, over the interval ab the layer is at rest with
K respect to the bottom and near it; it exerts no pressure
4 7 pe 7 o on the bottom and does not separate from it. This behavior
' 2 77 was observed during the shaking of layers more than 50-100
Fig. 3. Trajectories for layers with mm deep. At a lower depth the electrical contact between the
depths of 0.007 m (1), 0.04 m (2), and layer and the bottom is lost when the layer ceases to exert
0.08 m (3) according to Egs. (16) and (17) pressure on the bottom. These results support the argu-
for the value K; = 2.82, according to the ment that the tossing of deep layers is retarded by "pinch-
calculations in [1-3]; 4) trajectory for the ing" by the vessel walls.

bottom of the vessel. The time dependence of the electrical resistance of the

material (corresponding to density oscillations of discrete
phase and internal stresses in the layer) agrees well with the time dependence of the pressure exerted by
the particles on the vessel wall during the shaking. During the contact stage, when the pressure exerted
by the particles on the walls is maximal, the electrical resistance of the material reaches its minimum
value. When the reaction of the bottom disappears, the stresses in the layer decrease, and the electrical
resistance increases slightly. After the direction of motion changes, the resistance increases abruptly,
and the layer exerts a minimal pressure on the walls. The abrupt changes in the electrical resistance of
the tossed material which occur upon the change of direction demonstrate the validity of the two-stage
model for the motion. Theory and experiment can be compared quantitatively by comparing the initial con-
ditions and the trajectories of the actual material (corundum with a particle size of 1.32 mm) and the model,
whose properties are shown in Fig. 2. The dependence of the damping factor n on Ky, required for the cal-
culations, was obtained from Eqs. (6) and (7") and the experimental data on the phase angles wtg_) corre-
sponding to the separation of the material. These phase angles were inferred from the instant at which the
load disappeared from the membrane strain gauges at the bottoms of vessels, 0,04-0.25 m in diameter.
The values of o and A used in calculating 1 were assumed equal to 0.5 in accordance with [5]. The particle
size ensured that there were no appreciable pulsations in the hydrodynamic head (AP /x, < v) [6], thereby
facilitating the comparison with theory.

Figure 2 shows the coefficients ¢, Py, and P(-) calculated from Eqgs. (7"), (11), and (12); these
results show that the delay in the beginning of flight due to friction with the wall (¢(+) > ¢) is appreciable
at small vibration parameters (K, = 1.56 and 2.82), while at large values of K;, over nearly the entire
range of heights xj, where K; > ¢(+), the beginning of flight is determined from the vanishing of the reac-
tion of the bottom, from (6). The crosses in this figure give the maximum height of the material, at which
the external friction force reaches the level corresponding to the vibration inertia @) = Ky), and the phase
angle of the beginning of flight becomes equal to 7/2. In this case the layer no longer escapes from the
bottom of the vessel.

The data on the limiting layer height was checked with a KM-6 cathetometer, which permitted highly
accurate measurements of the excursion s' between the highest position of the tossed material and the
lowest position of the bottom (for the case in which the material falls in the last quarter of the period).
The layer heights at which s' becomes smaller than twice the vibration amplitude, 2A, evidence of the
attainant of the maximum layer height, are shown by the circles in Fig. 2. These values deviate from the
calculated values by no more than 15%.

Using the results calculated for the motion of an object in the field of a constant body force of intensity
1/K; (in dimensionless form), given in [1-3], we can easily calculate the trajectories of an object sub-
jected to a force of intensity b(+) /K, for various values of @(+) and for the initial conditions determined
from the curves in Fig. 2 (the left branches in Fig. 3). After finding the point corresponding to v = dsy;/dé¢
= 0; (s = max) on these trajectories, we continue to follow the object, but along a different trajectory,
corresponding to a force @(-) /K, (the right branches). Their intersections with the trajectories of the
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bottom give the values of 63. The trajectories shown in this figure for three bodies, corresponding to
different layer depths, show that only if the layer depth is comparable to the particle size does the layer
behave as a Kroll object, since in this case the internal and external friction forces are negligible (curve
1). On the other hand, an increase in the height x, leads, as was mentioned above, to an abrupt change in
the nature of the trajectory: its height becomes much lower, with a relative increase in the time of flight.

The final results of this study were also checked experimentally. In experiments carried out under
the conditions described above, strain gauges were used to measure the times at which the material sepa-
rated from and struck the bottom of the vessel (the circles in Fig, 3). In addition, a cathetometer was used
to determine the optical thickness s' of the gap between the layer and the bottom (the horizontal bars in
Fig. 3). The trajectory elements of the real material determined in this manner agree well with theoretical
values.

Accordingly, this model gives a satisfactory description of the motion of a real material tossed in a
vertically vibrating apparatus over broad ranges of the parameters K; and x,.

NOTATION
u is the displacement of the material;
l is the displacement of the bottom of the vessel;
s is the height of the tossing above the bottom;
D is the diameter of the vessel;
b4 is the instantaneous height;
Xg is the height of the material;
Ay is the vibration amplitude;
t is the time;
w is the angular frequency;
i, g are the inertial and gravitational accelerations.
m, F are the mass and lateral surface area of the layer;

Ogs TF are the normal and tangential stresses averaged over the cross section;
a, A, are the coefficient of dry friction, coefficient of lateral pressure, and damping factor;

oM is the density of the material;
£ is the porosity of the layer;
AP is the hydraulic resistance of the layer.

LITERATURE CITED

W. Kroll, Forschung auf dem Gebiete des Ingenjeurwesens, 20, No. 1, 2 (1954).
T. Josida and Kausaka, J, Chem. Engrs., Japan, 5, No. 1, 159 (1967).
W. Baader, Grundlagen des Landtechnik, 13 (1961),

A. F. Ryzhkov, in: Industrial Boiling-Film Furnaces [in Russian], Sverdlovsk (1973), p. 12,

R. L. Zenkov, Mechanics of Loose Soil [in Rugsian], Gostekhizdat, Moscow (1952).

A. F. Ryzhkov, A. P. Baskakov, and I. L. Shishko, Heat and Mass Transfer [in Russian], Vol. 5,
Pt. 1, Naukova Dumka, Kiev (1972), p. 144.

803



